logo

 
  • Home
  • Laboratory
  • Products ▼
    • Advanced Microscopy
      • Electron Microscopy
        • TableTop Microscope
          • Tabletop Microscopes TM4000II/TM4000PlusII
          • Tabletop Microscopes TM4000/TM4000Plus
          • TM Series Energy Dispersive X-ray Spectrometer: Quantax75
          • TM Series Energy Dispersive X-ray Spectrometer: Element Series
          • TM Series Energy Dispersive X-Ray Spectrometers: AZtec Series
          • The TM Series 3D visualization software Hitachi map 3D
        • Variable Pressure Scanning Electron Microscope (VP-SEM)
          • Scanning Electron Microscopes SU3800/SU3900
          • Scanning Electron Microscope SU3500
          • Scanning Electron Microscope S-3700N
          • Scanning Electron Microscope FlexSEM 1000 / FlexSEM 1000 II
        • Field Emission Scanning Electron Microscope (FESEM)
          • Ultra-high Resolution Field Emission Scanning Electron Microscope SU9000
          • Ultra-high Resolution Field Emission Scanning Electron Microscope Rugulus Series
          • Ultra-High-Resolution Schottky Field Emission Scanning Electron Microscope SU7000
          • Schottky Field Emission Scanning Electron Microscope SU5000
        • Transmission Electron Microscope (TEM)
          • Field Emission Transmission Electron Microscope HF5000
          • Field Emission Transmission Electron Microscope HF-3300
          • Transmission Electron Microscope H-9500
          • Transmission Electron Microscope HT7800 Series
        • Transmission Electron Microscope (STEM)
          • Field Emission Scanning Transmission Electron Microscope HD-2700 with and without spherical aberration corrector
      • MicroCT
        • Specimen Systems
          • µCT 35
          • µCT 40
          • µCT 45
          • µCT 50 (nano CT)
          • µCT 90
          • µCT 100
          • µCT 100 HE
        • Preclinical Systems
          • vivaCT 40 - In vivo MicroCT
          • vivaCT 75 - In vivo MicroCT
          • vivaCT 80 - In vivo MicroCT
          • XtremeCT II
          • XtremeCT
        • Clinical microCT
          • XtremeCT II
      • Scanning Acoustic Microscopy
        • KSI v-Series
          • KSI v 300
          • KSI v8
          • KSI v8 Advanced
          • KSI v8 Duo
          • KSI v8 Multihead
    • Focused Ion Beam
      • Focused Ion and Electron Beam System Ethos NX5000
      • Real-time 3D analytical FIB-SEM NX9000
      • Focused Ion and Electron Beam System & Triple Beam System NX2000
      • Focused Ion Beam System MI4050
      • Mirco-sampling system
      • CAD Navigation System
        NASFA (Navigation
        system for Failure
        Analysis)
    • Atomic Force Microscopy
      • Probe Station AFM5000II / Real TuneII
      • General-purpose Small Unit AFM5100N
      • Environment Control Unit AFM5300E
      • Atomic Force Microscope AFM5500M
    • Microanalysis
      • Energy Dispersive Microanalysis System (EDS)
        • TEAM™ EDS System for SEM
        • TEAM™ EDS System for TEM
        • Genesis System
        • EDS Detectors
          • Silicon Drift Detector (SDD) for the Transmission Electron Microscope (TEM)
          • Silicon Drift Detector (SDD) for the Scanning Electron Microscope (SEM)
          • Si(Li) Detector
      • Wavelength Dispersive Microanalysis System (WDS)
        • LEXS
        • TEXS
      • Electron Backscattered Diffraction (EBSD)
        • TEAM™ EBSD Analysis System
        • OIM™ Data Analysis
        • EBSD Cameras
          • Hikari XP EBSD Camera
          • DigiView IV EBSD Camera
          • Forward Scatter Detector (FSD)
    • nano-IR Spectroscopy
      • mIRage IR microscope
      • O-PTIR
    • Surface Metrology
      • Measuring Microscopes
        • Portable Measuring Microscopes
        • Video Measuring Microscopes
        • Measuring Microscopes with eyepiece
      • Microhardness Tester VMHT
    • Surface Sciences
      • LEIS
      • VLS-80
      • SurfaceLab 7
      • SIMS
        • M6
        • M6 Plus
        • M6 Hybrid SIMS
        • TOF-SIMS 5
      • X-ray Photoelectron Spectrometer (XPS)
        • K-Alpha™+ X-ray Photoelectron Spectrometer (XPS) System
        • ESCALAB 250Xi X-ray Photoelectron Spectrometer (XPS) Microprobe
        • Theta Probe Angle-Resolved X-ray Photoelectron Spectrometer (ARXPS) System
    • Raman Spectroscopy
      • XploRA Series
        • XploRA ONE™ - Simply better Raman
        • XploRA™ PLUS
        • XploRA INV
        • XP Examina - Forensics Package
      • LabRAM HR Evolution
      • Triple Raman spectrometers
    • Sample Preparations
      • Ultramicrotomes
        • PowerTome 3D
        • PowerTome PCZ
        • PowerTome XL
        • PowerTome FL
        • LN Ultra
        • Advanced Substrate Holder
        • Automated Tape Collecting Ultramicrotome
      • Rotary Microtomes
        • MT990: Rotary Microtome
        • MT990 with CR1000: Rotary Microtome with Cryosectioning System
        • MR3: Series 300 Motorized Rotary Microtome
        • MR2: Series 200 Manual Rotary Microtome
      • Workflow Instruments
        • Automated EM Tissue Processor
        • Anti-Vibration Table
        • FS8500: Freeze Substitution System
        • GKM2: Glass Knife Maker
      • Sputter Coaters and SEM/ TEM Carbon Coaters
        • SC7620 Mini Sputter Coater/Glow Discharge System
        • Q150V Plus for ultra-fine coatings in high vacuum applications
        • Q150R Plus - Rotary Pumped Coater
        • Q150T Plus - Turbomolecular pumped coater
        • Q150 GB Turbo-Pumped Sputter Coater / Carbon Coater for Glove Box
        • Q300T T Plus - triple target sputter coater for specimens up to 200mm diameter
        • Q300T D Plus - dual target sequential sputtering for specimens up to 150 mm diameter
      • Cryo-SEM Preparation Systems
        • PP3010T Cryo-SEM/Cryo-FIB/SEM Preparation System
        • PP3006 CoolLok Cryo Transfer for SEM and FIB/SEM
        • PP3005 SEMCool Non-Airlock Cooling System for SEM and FIB/SEM
      • Critical Point Dryers
        • E3100 Critical Point Dryer
        • K850 Critical Point Dryer
        • K850WM Large Chamber Critical Point Dryer
      • Freeze Dryers for Sample Preparation
        • K750X Peltier-Cooled EM Freeze Dryer
        • K775X Liquid Nitrogen Cooled Turbo-Pumped EM Freeze Dryer
      • Bench-Top Vacuum Evaporators
        • K975X/K975S Turbo-Pumped Thermal Evaporators
      • Recirculating Heaters and Chillers
        • E4800 Recirculating Heater/Chillers
      • Coolstage - Peltier-Cooled SEM Stage
      • K1050X RF Plasma Etcher/Asher/Cleaner
      • PP3004 QuickLok Ambient Transfer System
      • GloQube Glow Discharge System for TEM Grids and Surface Modifications
      • Sputter Targets
      • Carbon Consumables
      • IM4000Plus Series Ion-Milling Systems
      • ZONE Desktop Sample Cleaner and Desiccator for SEM/TEM
  • Activities
  • About us
  • Career
  • Contact us
Surface Sciences

M6 Plus

The tool for nano characterisation

Information concerning chemical composition, physical properties and the three-dimensional structure of materials and devices at the nanometre scale is of major importance for new developments in nanoscience and nanotechnology. In a 3D SIMS measurement the initial topography of the sample surface as well as topographic changes during the experiment cannot be easily identified Scanning Probe Microscopy (SPM) provides complementary information about the surface topography and can also be used to measure the physical properties of the analysed sample.

Through the combination of these two techniques true in situ three-dimensional chemical imaging becomes possible. The new M6 Plus platform combines the high-end performance of the M6 with the possibility to perform in situ SPM measurements. The large area SPM unit has a scan range of up to 80 x 80 x 10 µm3 and is ideally suited to provide topographic information for true 3D SIMS measurements.

1. Powerful tool for nano characterisation

2. All standard SPM modes e.g. AFM, MFM, KPFM, multi-frequency

3. Large SPM scan range of 80 x 80 x 10 µm3

4. Unique surface profiler mode for large SIMS sputter crater     measurements

5. Full compatibility with all M6 options


Micrometre postion accuracy

The piezo sample stage of the M6 Plus with sub-micron position accuracy ensures fast and precise movement between the TOF-SIMS and the SPM measurement position.

The stage has a 10 nm encoder resolution and travel speeds of up to 10 mm/s which guarantees a new level of precision and stability.

 



True 3D chemical imaging

The example below shows a three-dimensional analysis of a germanium structure inside a silicon matrix. The structure has a strong initial surface topography which leads to an incorrect representation of the chemical composition if TOF-SIMS data are used alone. By combining the chemical information of TOF-SIMS with the dimensional information of SPM a true three-dimensional chemical image can be generated.


   
3D overlay without topography correction: SiN (red), Ge (orange), SiO2 (yellow) and Si (green).Field of view: 25 x 25 µm2


3D overlay with topography correction: SiN (red), Ge (orange), SiO2 (yellow) and Si (green). Field of view: 25 x 25 µm2    

                            



Surface profiler mode

The SPM module of the M6 Plus also allows for detailed analysis of large sputter craters. In the so-called surface profiler mode multiple SPM scans are stitched together to measure long SPM line scans. This unique SPM mode is extremely valuable to precisely determine the depth of sputter craters or to measure crater roughness on the nanometer scale.

The example shows a SPM surface profiler scan of a 1.1 µm deep sputter crater in silicon. The line scan consists of multiple individual SPM scans. The recording time for the entire scan was less than 3 minutes and revealed a surface roughness of 0.7 nm (RMS) outside and 10.3 nm (RMS) inside the crater.


 




             
 

M6 Plus

SIMS 

• M6

• M6 Plus

• M6 Hybrid SIMS

• TOF.SIMS 5

Copyright 2012 © All Rights Reserved By HI-TECH INSTRUMENTS.